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HEATING OF A HALF-SPACE BY A HEAT SOURCE IN THE SHAPE
OF A RECTANGULAR FRAME

Yu. M. Kolyano, E. G. Ivanik, and D. I. Oliinyk UDC 536.2.083

A solution is presented for the inverse nonstationary spatial coefficient prob-
lem of heat conduction for a half-space heated through a domain in the shape of
a rectangular frame on its surface by an arbitrary heat source with respect to
time.

Solutions of nonstationary heat conduction problems obtained [1, 2] for an isotropic
half-space under discontinuous boundary conditions of the second kind (a heater in the shape
of a circle, ring, square) are used to investigate a set of thermophysical characteristics
(TPC) of isotropic materials. To find the TPC set from one experiment there is no necessity
to place the sensor within the isotropic body under investigation, i.e., the complex measure-
ments of appropriate thermophysical quantities are realized by nondestructive testing meth-
ods [1]. A simple expression is obtained in [3] for the temperature field in the center of
an annular heater and the set of TPC of isotropic bodies is investigated on its basis by
nondestructive testing methods.

Let us consider an isotropic half-space heated in the domain of the surface z = 0 by a

heat flux of density q(t) in the shape of a rectangular frame 2x, x 2y, — 2x, x 2y, (Fig. 1).
The rest of the surface is assumed heat insulated. We assume the initial temperature and
the temperature at infinity equal to t; = const, while the first derivatives of the tempera-
ture function with respect to the coordinates x, v equal zero. We shall consider those tem-
perature ranges to be considered when the material TPC are temperature independent. In this
case, we have the following boundary value problem to determine the excess temperature 6 =

t — ty:
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where M(x, y) = Ny(x)N,(y) = N1 ()N;(y), 6 = 36/37, Ni(x) = S(x + x3) — S(x —x3), 1 =1, 2.

Applying the Fourier integral transform in x, y and the Laplace in t to Eq. (1) and
boundary conditions (2) under the boundary conditions (3), we obtain, respectively
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The solution of (4) under the boundary conditions (5) has the form

0= 4t m exp (7o) (6)

Going over from the transform to the originals in (6) by using [4, 5], we arrive at the fol-
lowing expression for the excess temperature
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and b = A/Vais the thermal activity.
If the heat flux density at the initial instant changes by a certain quantity g, and
then remains constant, i.e.,
q(v) = 445+ (v), (8)
then taking (8) into account we have instead of (7)
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In place of (9) at the center of the heater (x = y = z = 0) there will be
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where ¢;(u) = u™'[xj exp (—u?) erf (e;u) + y; exp (—e4u?) erf (u)l; ei = yi/x; (i =1, 2).

Let us rewrite (10) for a frame with identical wall thickness in another form and let
us represent it in criterial form
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Fig. 1. Model for specimen heating by

a heater in the shape of a rectangular

frame.
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Fig. 2. Change in the function £(Fo) as a function of the
Fourier criterion: 1) £ = 0; 2) 0.6; 3) 0.95; a) ¢; = 0.5;
b) 0.7; ) 1.
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€ = X1/Xy = V1/¥23 €1 = y1i/%x1 = yo/%,3 Fo = 4at/x,? — is the Fourier criteria.

For €; = 1 the solution for a heater in the form of a square that is obtained by another

method in [2], follows from (11).
For a stationary thermal regime (t » =), we obtain from (10)
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If ¢, = €,, we have in place of (12)

W0 . .
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An expression for the heat conduction coefficient
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follows from (13) for moderate values of 64 for different ¢ and €;.

After substituting (14) into (11) and simple manipulations we find
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The functions f(Fo) are computed by means of (15) for different values of £ and £; that
are represented in the form of graphs in Fig. 2.

For fixed values of ¢ and ¢, we measure the temperature 6, at a definite time tv,. Know-
ing the temperatures 0, and 65 we find the value

Fo, == . (16)

corresponding to f(Fo,) = 8,(Fo;)/6g from the graph.

Since the t;, Fo;, and x, are known, then the thermal diffusivity coefficient is deter-
mined in the form
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The expression for the heat conduction coefficient has the form (14) for the values
taken for € and ¢,. Therefore, the bulk specific heat coefficient is determined by the
known expression cy = A/a.

The method proposed for determining the TPC is characterized by accessibility of the
temperature measurements at the center of a heater in the shape of a rectangular frame.

The value of the temperature 8¢ for the stationary thermal mode figures in (12). Mea-
surement of this value of the temperature by an IR imager, say, is realized for large values
of the Fourier criterion in such a manner that the curve-of the temperature change as a
function of the time would reach 84 = const.

NOTATION

As ¢ , heat conduction and thermal diffusivity coefficients; x, y, z, space coordinates;
T, time; &, n, s, parameters of the Fourier and Laplace integral transforms in x, y, and T,
respectively; erf (£), probability integral; S(&), S4(&), symmetric and asymmetric unit func-
tions, respectively.
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